65 research outputs found

    Functional protection by acute phase proteins alpha(1)-acid glycoprotein and alpha(1)-antitrypsin against ischemia/reperfusion injury by preventing apoptosis and inflammation.

    Get PDF
    BACKGROUND: Ischemia followed by reperfusion (I/R) causes apoptosis, inflammation, and tissue damage leading to organ malfunction. Ischemic preconditioning can protect against such injury. This study investigates the contribution of the acute phase proteins alpha(1)-acid glycoprotein (AGP) and alpha(1)-antitrypsin (AAT) to the protective effect of ischemic preconditioning in the kidney. METHODS AND RESULTS: Exogenous AGP and AAT inhibited apoptosis and inflammation after 45 minutes of renal I/R in a murine model. AGP and AAT administered at reperfusion prevented apoptosis at 2 hours and 24 hours, as evaluated by the presence of internucleosomal DNA cleavage, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, and the determination of renal caspase-1- and caspase-3-like activity. AGP and AAT exerted anti-inflammatory effects, as reflected by reduced renal tumor necrosis factor-alpha expression and neutrophil influx after 24 hours. In general, these agents improved renal function. Similar effects were observed when AGP and AAT were administered 2 hours after reperfusion but to a lesser extent and without functional improvement. Moreover, I/R elicited an acute phase response, as reflected by elevated serum AGP and serum amyloid P (SAP) levels after 24 hours, and increased hepatic acute phase protein mRNA levels after 18 hours of renal reperfusion. CONCLUSIONS: We propose that the antiapoptotic and anti-inflammatory effects of AGP and AAT contribute to the delayed type of protection associated with ischemic preconditioning and other insults. This mechanism is potentially involved in the course of many clinical conditions associated with I/R injury. Moreover, exogenous administration of these proteins may provide new therapeutic means of treatmen

    Real-Time In Vivo Imaging of Early Mucosal Changes during Ischemia-Reperfusion in Human Jejunum

    Get PDF
    BACKGROUND AND STUDY AIMS: Small intestinal ischemia-reperfusion (IR) is a frequent, potentially life threatening phenomenon. There is a lack of non-invasive diagnostic modalities. For many intestinal diseases, visualizing the intestinal mucosa using endoscopy is gold standard. However, limited knowledge exists on small intestinal IR-induced, early mucosal changes. The aims of this study were to investigate endoscopic changes in human jejunum exposed to IR, and to study concordance between endoscopic appearance and histology. PATIENTS AND METHODS: In 23 patients a part of jejunum, to be removed for surgical reasons, was isolated and selectively exposed to ischemia with 0, 30 or 120 minutes of reperfusion. In 3 patients, a videocapsule was inserted in the isolated segment before exposure to IR, to visualize the mucosa. Endoscopic view at several time points was related to histology (Heamatoxylin & Eosin) obtained from 20 patients. RESULTS: Ischemia was characterized by loss of villous structure, mucosal whitening and appearance of punctate lesions. This was related to appearance of subepithelial spaces and breaches in the epithelial lining in the histological view. Early during reperfusion, the lumen filled with IR-damaged, shed cells and VCE showed mucosal erosions, hemorrhage and intraluminal debris. At 60 minutes of reperfusion, the only remaining signs of IR were loss of villous structure and small erosions, indicating rapid mucosal healing. CONCLUSIONS: This study shows a unique, real-time in vivo endoscopic view of early mucosal changes during IR of the human small intestine. Future studies should evaluate its usefulness in diagnosis of patients suspected of IR

    Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    No full text
    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion molecules, enhances cytokine production, and induces tissue factor procoagulant activity. In the present study, we have examined the relative roles of the two cell surface receptors for TNF-alpha (p55 and p75) on endothelial cells, using antibodies with both agonistic and antagonistic activities. We report that anti-p55 receptor agonistic antibody Htr-9 induces the expression of tissue factor antigen and the release of interleukin-8 (IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF). In contrast, there is very little or no activation of endothelial cell responses by an anti-p75 agonist. TNF-alpha-induced expression of tissue factor and adhesion molecules, and release of IL-8 and GM-CSF, are decreased by antibodies with antagonistic activities for either receptor, although the effect of anti-p55 antibodies is markedly greater than that of anti-p75 antibodies. The responses of endothelial cells to lymphotoxin/TNF-beta are significantly decreased by anti-p55 antagonists alone. Our data suggest that endothelial cell responses to TNF-alpha, such as expression of tissue factor and adhesion molecules for mononuclear cells, which may be important in the pathogenesis of atherosclerosis, are mediated predominantly, but not exclusively, by the p55 TNF receptor

    Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    No full text
    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion molecules, enhances cytokine production, and induces tissue factor procoagulant activity. In the present study, we have examined the relative roles of the two cell surface receptors for TNF-alpha (p55 and p75) on endothelial cells, using antibodies with both agonistic and antagonistic activities. We report that anti-p55 receptor agonistic antibody Htr-9 induces the expression of tissue factor antigen and the release of interleukin-8 (IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF). In contrast, there is very little or no activation of endothelial cell responses by an anti-p75 agonist. TNF-alpha-induced expression of tissue factor and adhesion molecules, and release of IL-8 and GM-CSF, are decreased by antibodies with antagonistic activities for either receptor, although the effect of anti-p55 antibodies is markedly greater than that of anti-p75 antibodies. The responses of endothelial cells to lymphotoxin/TNF-beta are significantly decreased by anti-p55 antagonists alone. Our data suggest that endothelial cell responses to TNF-alpha, such as expression of tissue factor and adhesion molecules for mononuclear cells, which may be important in the pathogenesis of atherosclerosis, are mediated predominantly, but not exclusively, by the p55 TNF receptor

    THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    No full text
    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties or the morphology of cartilage matrix and chondrocytes. The standard stain safranin O-fast green for differential staining of cartilage was used as control in these experiments. Prolonged exposure of safranin O stained sections to fast green resulted in disappearance of the safranin O stained matrix, thereby hampering the quantitative measurement of negatively charged glycosaminoglycans (GAG). Thionin stained evenly throughout all cartilage layers, independent of the staining times. In contrast to safranin O, thionin did not show metachromasia in nondehydrated cartilage sections, which made it more suitable for assessing cartilage quality in GMA embedded cartilage. To evaluate the selectivity of thionin staining in cartilage, chondroitinase ABC and trypsin digestions were carried out. Thionin staining was prevented by these enzymes in the territorial matrix, representing the interlacunar network and the chondrocyte capsule. Staining with thionin of the interterritorial matrix was only slightly reduced, possibly representing keratan sulfate and hyaluronic acid in cartilage of elderly patients. Comparison of thionin stained GMA embedded cartilage with safranin O stained paraffin embedded sections showed significant similarity in optical densitometry, indicative of the specificity of thionin bound to negatively charged GAG in cartilage. In GMA embedded cartilage morphology was relatively intact compared to paraffin embedded sections due to less shrinkage of chondrocytes and the interlacunar network
    • …
    corecore